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INTRODUCTION

Human–information interaction (HII) is an emerging branch of human–computer interac-
tion (HCI) which is concerned with how people interact with and process outwardly 
accessible information such as the World Wide Web.1 However, HII adopts an informa-
tion-centric approach rather than the computer-centric approach to the fi eld of human–
computer interaction (Lucas 2000). Like HCI, HII is an application fi eld that provides a 
complex test bed for theories of cognitive architecture. In turn, such theories provide the 
basis for cognitive engineering models that can yield predictions about technology and 
information design. This chapter provides an overview of cognitive architectures and 
cognitive engineering models in the context of human–information interaction.

The evolution of HCI toward the information-centric fi eld of HII has occurred because 
of the increasing pervasiveness of information services, the increasing transparency of 
user interfaces, the convergence of information delivery technologies, and the trend 
toward ubiquitous computing (Lucas 2000). Access to the Internet is pervasive through 
land lines, satellite, cable, mobile devices, and wireless services. The fi eld of HCI over 
the past two decades and more has led to the development of computers and computer 
applications that are increasingly transparent to users performing their tasks. In parallel, 
the business world around consumer media technologies shows excitement over the con-
vergence of television, cell phones, PCs (personal computers), PDAs (Personal Digital 
Assistants), cars, set-tops, digital music players, and other consumer electronic devices, 
as well as the convergence among the means for transporting information, such as the 
Internet, radio, satellite, cable, and so on. Research on ubiquitous computing looks forward 
to a world in which computational devices are basically everywhere in our homes, mobile 
devices, cars, and so on, and these devices can be marshaled to perform arbitrary tasks 
for users. The net effect of these trends is to make computers invisible, just as electricity 
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and electric motors are invisible in homes today (Norman 1998). As computers become 
invisible and information becomes copious and pervasive, we expect to see a continuing 
shift in studies from human–computer interaction to human–information interaction. 
Digital content is becoming independent of the particular physical storage devices and 
interaction devices. Rather than focus on the structure of devices and application pro-
grams, the focus of HII research centers on interaction with content and interactive 
media.

Although information is part of the focus of the fi eld of HII, it is not the sole focus. 
HII continues to share with HCI a focus on the psychology of users. Information per se, 
whether in the classical sense (patterns of organization) or common sense (documents, 
email, summaries, document clusters, search results, etc.), is of limited interest. Informa-
tion content has the potential to be used in ways that improve the achievement of human 
purposes. Information itself is best understood in relation to human use of that informa-
tion, so human intentionality, psychology, and activity are crucial to providing coherence 
to the study of human–information interaction.

This chapter takes a particular approach to the psychology of HII, with a focus on the 
cognitive architectures and cognitive engineering models that are being extended to deal 
with HII questions. Cognitive engineering in the domains of HCI and HII is founded on 
the assumption that psychology ought to be able to predict the consequences of different 
technology designs. For instance, cognitive engineering models have been developed to 
address questions such as:

• How much time would it take to perform elementary tasks, like inserting, deleting, or 
moving text?

• How long will it take to learn the skills required for basic text editing?
• Will knowledge of other applications, such as a spreadsheet, transfer to the text 

editor?
• Will a user be able to fi gure out how to perform tasks (e.g., by exploration of the inter-

face) without explicit instruction?
• How long will it take an experienced user to fi nd an answer to a question using their 

PDA?
• What arrangement of information on a display yields more effective visual search?
• How diffi cult will it be for a user to fi nd information on a website?

For modern information systems, iterative empirical testing and design revision are 
usually too expensive and too slow. One solution to this practical problem has been the 
development of discount usability methods (e.g., Nielsen & Mack 1974; Spool et al. 1999; 
Nielsen 2000) that employ low-cost techniques such as think-aloud usability tests and 
heuristic evaluations with small numbers of subjects (often experts in the target domain 
of interest), often using low-fi delity interface prototypes than can be easily redesigned. 
This method is aimed at rapidly uncovering bugs in the design at low cost. At the early 
stages of design, user interfaces often have so many bugs that this approach is productive. 
Cognitive engineering models form a complementary approach founded on the twin 
notions that prediction is a sign of understanding and control over the phenomena of inter-
est, and a designer with an engineering model in hand can explore and explain the quan-
titative and qualitative effects of different design decisions before the heavy investment 
of resources for implementation and testing. This exploration of design space is more 
effi cient because the choices among different design alternatives are better informed: 
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Rather than operating solely by intuition, the designer is in a position to know which 
avenues are better to explore and which are better to ignore. Nearly 40 years ago, when 
the fi rst textbook on cognitive psychology was written (Neisser 1967), it would have been 
impossible to answer the questions listed above based on psychological theory alone. Only 
the fi rst of these could have been answered in a restricted way nearly 25 years ago, when 
the fi rst classic monograph on the psychology of HCI was written (Card et al. 1983). The 
second, third, and fourth questions could be answered at the time of publication of fi rst 
edition of the Handbook of Applied Cognition (Pirolli 1999). Recent progress allows us 
to begin to address the last three questions. The continual accumulation of knowledge and 
progress in predictive power is a measure of the fruitfulness of the marriage of psychology 
and human–information interaction.

HUMAN–INFORMATION INTERACTION

During the 1990s, there was an explosion in the amount of information that became avail-
able to the average computer user, and the development of new technologies for accessing 
and interacting with all of that information. The late 1980s witnessed several strands of 
HCI research devoted to ameliorating problems of exploring and fi nding electronically 
stored information. It had become apparent that users could no longer remember the names 
of all their electronic fi les, and it was even more diffi cult for them to guess the names of 
fi les stored by others (Furnas et al. 1987). In the mid- to late 1980s HCI literature there 
were several proposals to enhance users’ ability to search and explore external memory. 
Jones (1986) proposed the Memory Extender (ME), which used a model of human asso-
ciative memory (Anderson 1983) to automatically retrieve fi les represented by sets of 
keywords that were similar to the sets of keywords representing the users’ working 
context. Latent Semantic Analysis (LSA; Dumais et al. 1988) was developed to mimic 
human ability to detect deeper semantic associations among words, like “dog” and “cat,” 
to similarly enhance information retrieval.

Hypermedia also became a hot topic during the late 1980s, with Apple’s introduction 
of HyperCard in 1987, the fi rst ACM Conference on Hypertext in 1987, and a paper session 
at the CHI ‘88 conference.2 The very idea of hypertext can be traced back to Vannevar 
Bush’s Atlantic Monthly article “As We May Think” (Bush 1945). Worried about scholars 
becoming overwhelmed by the amount of information being published, Bush proposed a 
mechanized private fi le system, the Memex, which would augment the memory of the 
individual user. It was explicitly intended to mimic human associative memory. Bush’s 
article infl uenced the development of Douglas Engelbart’s NLS (oNLine System), which 
was introduced to the world in a tour-de-force demonstration at the 1968 Fall Joint Com-
puter Conference. The demonstration of NLS – a system explicitly designed to “augment 
human intellect” (Engelbart 1962) – also introduced the world to the power of networking, 
the mouse, and point-and-click interaction. Hypertext and hypermedia research arose 
during the late 1980s because PC power, networking, and user interfaces had evolved to 
the point where the visions of Bush and Engelbart could fi nally be realized for the average 
computer user.

The confl uence of increased computing power, storage, and networking and information 
access and hypermedia research in the late 1980s set the stage for the widespread deploy-
ment of hypermedia in the form of the World Wide Web. In 1989, Tim Berners-Lee 
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proposed a solution (Berners-Lee 1989) to the problems that were being faced by the 
CERN3 community in dealing with distributed collections of documents, which were 
stored on many types of platforms, in many types of formats. This proposal led directly 
to the release of the World Wide Web in 1990. Berners-Lee’s vision was not only to provide 
users with more effective access to information, but also to initiate an evolving web of 
information that refl ected and enhanced the community and its activities. The emergence 
of the Web in the 1990s provided new challenges and opportunities for HCI. The increased 
wealth of accessible content, and the use of the Web as a place to do business, exacerbated 
the need to improve the user experience on the Web. The phenomenal growth of the 
Web, and the increasing pervasiveness of interaction with electronic content provided 
novel questions for cognitive architectures and engineering models, and initiated the 
development of information foraging theory, all of which are discussed in the next 
sections.

COGNITIVE ARCHITECTURES

Scientifi c understanding and prediction in the fi eld of HII requires integrative psychologi-
cal theories. Theories need to provide predictions at multiple time-scales of phenomena 
and provide explanations in multiple ways. Theories also have to integrate across the 
typical subdivisions of psychological theory. Cognitive architectures provide such integra-
tion and are consequently a good source of applied theory for HII.

The early growth of cognitive psychology during the 1950s and 1960s was characterized 
by research in largely independent experimental paradigms. Each such paradigm might 
involve variations on one or a few experimental tasks which were designed to address a 
few interesting questions about the nature of cognition. In a classic challenge to the fi eld, 
Allen Newell (1973) argued that cognitive psychology could not make signifi cant progress 
by this divide-and-conquer approach to research. Newell believed that understanding 
cognition, in even simple tasks, required an integrated theory of many cognitive processes 
and structures. Findings from one paradigm were surely relevant to the analysis of other 
paradigms. Progress, Newell (1973) argued, would require the development of theories 
that provide a unifi ed way of accounting for all the diverse phenomena and tasks found 
in the individual paradigms.

One of the signifi cant recent developments in theories of cognitive architecture has been 
the integration of perceptual-motor theories with cognitive theory. Interestingly, the inspi-
ration for this effort came from an HCI cognitive engineering model developed by Card 
et al. (1983). This section will begin with a review of the Model Human Processor devel-
oped by Card et al. (1983) because of the importance of this model in both HCI and as a 
harbinger of recent developments in cognitive architectures

The Model Human Processor

The Model Human Processor (Figure 17.1) developed by Card et al. (1983) is a synthesis 
of fi ndings from a diverse set of cognitive psychology paradigms. The purpose for its 
development was to provide a way for engineers to make zero-parameter predictions about 
performance with HCI systems.4 The Model Human Processor is specifi ed as (a) a set of 

c17.indd   446c17.indd   446 9/15/2006   6:21:54 PM9/15/2006   6:21:54 PM



MODELS OF HUMAN–INFORMATION INTERACTION 447

E1

memories and processors and (b) a set of principles of operation. The processors and 
memories are summarized schematically in Figure 17.1. There are three subsystems for 
perceptual input, motor action, and cognition. The processors and memories in Figure 
17.1 are characterized by a set of parameters:

Motor
Processor

Perceptual
Processor

VISUAL IMAGE
STORE

AUDITORY IMAGE
STORE

WORKING MEMORY

LONG-TERM MEMORY

Cognitive
Processor

tM = 70 �30~100�
msec

tP = 100 �50~200�
msec

dVIS = 200 �70~1000� msec

mVIS = 17 �7~17� letters

kVIS = Physical

dAIS = 1500 �900~3500� msec

mAIS = 5 �4.4~6.2� letters

kAIS = Physical

dLTM = x,

mLTM = x,

kLTM = Semanlic

                  mWM = 3 �2.5~4.1� chunks

                mWM* = 7 �5~9� chunks

                  dWM = 7 �5~226� sec

dWM (1 chunk) = 73 �73~226� sec

dWM (3 chunk) = 7 �5~34� sec

                  kWM = Acoustic or Visual

Eye movement   230 �70~700� msec

tP = 70 �25~170�
msec

Figure 17.1 The Model Human Processor. Note that some estimates have changed since the 
original formulation. See text for details. From S. K. Card, T. P. Moran & A. Newell (1990), 
The Psychology of Human–Computer Interaction (p. 26). Hillsdale, NJ: Lawrence Erlbaum 
Associates. © 1983 by Lawrence Erlbaum Associates. Reprinted with permission
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• the storage capacity in terms of maximum number of items stored;
• the decay rate of an item (the time an item will reside in memory);
• the main type of code (representation type) of information, which may be physical, 

visual, acoustic, or semantic; and
• the cycle time (the time at which inputs to memory are updated).

The parameters are typical values extracted from the psychological literature. The 
general idea is that information is input from the world through the perceptual processors, 
into the visual and auditory stores. Some of this information makes its way into a working 
memory, which is operated on by the cognitive processor. The cognitive processor uses 
associations between information in working memory and long-term memory to make 
decisions and formulate actions. Actions in working memory trigger the motor processor 
to effect behavior in the world.

Card et al. (1983) defi ne a set of principles of operation for the Model Human Processor 
(see also Pirolli 1999). The cognitive processor works through a recognize–act cycle on 
the contents of working memory. Working memory is assumed to be the information that 
a person is currently heeding – their focus of attention. These working memory structures 
are called chunks (Miller 1956; Simon 1974). In the recognize phase, information in 
working memory retrieves associated actions in long-term memory. The act phase of the 
cycle executes those retrieved actions and changes the contents of working memory. These 
associations between working memory information and effective actions in long-term 
memory are built from prior experience. The associations may be organized in the form 
of plans, such as plans of organized action for operating an interface. In the original Model 
Human Processor of Card et al. (1983), each recognize–act cycle takes 70 ms on average 
(Figure 17.1). Research since that original formulation has revised the recognize–act cycle 
time down to 50 ms (John & Kieras 1996a).

Working memory is assumed to be of limited capacity and rapid decay rate. For 
instance, without rehearsal, only about 3–7 chunks of information can be held in working 
memory for about seven seconds (Miller 1956). On the other hand, long-term memory is 
of very large capacity (Landauer 1986) and a very slow decay rate (Figure 17.1). It is the 
repository of the collective experience and learning of a person. It contains both factual 
knowledge as well as knowledge of how to perform procedures. Although long-term 
memory has effectively infi nite capacity and permanent retention, there are factors that 
make retrieval less than perfect. These factors have to do with the ability of cues in 
working memory to retrieve associated information in long-term memory.

For the perceptual processor, it is assumed that auditory and visual stimuli trigger 
the appearance of representations in the auditory and visual memory stores. The repre-
sentations in these memories encode mostly physical (non-symbolic) characteristics such 
as the intensity of a sound or the curvature of a line. These memories are also of limited 
capacity and very rapid decay (items have a half-life of 200 ms in the visual store and 
about 1500 ms in the auditory store). The perceptual processor has a cycle time of about 
100 ms, which varies with stimulus intensity. The motor processor is assumed to operate 
with an approximately 70 ms cycle time. Many interactions with computers require 
movements of the hand or a hand-held mouse to some target location. The time to move 
the hand, or a mouse pointer, to a target may be calculated by Fitts’ law (MacKenzie 
2003), which depends on the distance to be traveled by the movement and the size of the 
target.
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EPIC

Like the Model Human Processor, EPIC (Executive Process-Interactive Control) architec-
ture (Kieras & Meyer 1997; Meyer & Kieras 1997a, 1997b) was developed with considera-
tion of perceptual-motor aspects of behavior. One signifi cant advance in EPIC is that it 
incorporates more recent and detailed results concerning human performance. A second 
signifi cant advance is that it is actually a computer simulation system. EPIC models are 
constructed by specifying procedures as production rules. When such models are pre-
sented with the external stimuli for a task (the computer displays, keyboards, etc.) they 
follow the procedures for the tasks and simulate the time course of events on both the 
system side and human side of the HCI system.

In large part, EPIC has been developed to yield better models of attention and perform-
ance in multiple-task situations. These situations might occur in HCI, for instance, with 
certain computer operator jobs. Often, computer operators must coordinate and interleave 
their conversational tasks with a customer with database tasks with a computer. In cogni-
tive psychology, the supervisory processes required to control and supervise other proc-
esses have traditionally been called executive processes – a carryover from the terminology 
of computer operating systems where an executive process oversees the other programs 
running on a computer. In EPIC, executive processes are considered to be the same as 
any other well-learned cognitive skill, and like other skills they are represented by produc-
tion rules.

EPIC has been designed with the realization that perceptual and motor processors 
are complicated in their own right, and they have important interactions and constraints 
with cognition and executive control processes. How well people can handle multiple-task 
situations will depend on the structural constraints on perceptual processors, motor 
processors, limitations on working memory, etc. In contrast to traditional multi-tasking 
models, EPIC does not assume a single-channel attentional processor which must be 
switched from task to task, nor does it assume some limited central resource capacity 
on cognition. EPIC simply assumes that executive control processes must work around 
the structural limitations of the perceptual-cognitive-motor system. This assumption 
has led to successful models of attention and performance covering a large body of 
multi-task laboratory experiments (Kieras & Meyer 1997; Meyer & Kieras 1997a, 1997b). 
One of the areas of EPIC application in HII has been in understanding and making 
predictions about visual search over information. An application of EPIC is discussed 
below.

Figure 17.2 is a schematic for the EPIC architecture. It is a cognitive processor 
surrounded by perceptual and motor processors. The cognitive processor is controlled 
by production rules, and information fl ows through the perceptual processors, to the 
cognitive processor, and to the motor processors, which have feedback. To develop a 
specifi c model of a task situation requires the specifi cation of production rules and the 
setting of perceptual-motor parameters. When combined with a simulator of the external 
environment, EPIC will simulate the serial and parallel actions required to perform the 
task.

The cognitive processor interacts with a working memory. Roughly, this working 
memory is equivalent to the short-term memory of the Model Human Processor. This 
working memory can also be thought of as a database that contains information represent-
ing goals and knowledge about the current state of affairs.
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Production rules specify the fl ow of control of cognitive processing. Productions match 
to the working memory database and specify changes to the database or other actions to 
perform. Each production rule is of the form:

IF <condition> THEN <actions>

The condition of a rule specifi es a pattern. When the contents of working memory match 
the pattern, the rule may be selected for application. The actions of the rule specify addi-
tions and deletions of content in working memory, as well as motor commands. These 
actions are executed if the rule is selected to apply.

The cognitive processor works on a 50 ms cycle. At the beginning of the cycle, working 
memory is updated by inputs from the perceptual processors, and by modifi cations that 
result from the application of production rules on the previous cycle. Production rules that 
match the contents from working memory are applied, and at the end of the cycle any 
motor commands that were issued are sent to the motor processor. All the production rules 
that match working memory are applied. The simultaneous application of production rules 
is a form of parallelism. Many other production systems (such as ACT-R discussed below) 
have limits of one production application per cycle. The perceptual and motor processors 
of EPIC are not necessarily synchronized with the 50 ms cognitive processor cycle. This 
means that perceptual inputs may have to “wait” on cognitive processing should they 
arrive before the beginning of the next cognitive cycle.

Figure 17.2 A schematic overview of the EPIC architecture. From An overview of the EPIC 
architecture for cognition and performance with application to human–computer interaction, 
Human–Computer Interaction, 12, 399. © 1998 by Lawrence Erlbaum Associates. Reprinted 
with permission
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Working memory is partitioned into stores of different kinds of content. There are 
partitions of working memory for visual, auditory, and tactile information. There are 
slaved to the perceptual processors. That is, the outputs of those processors appear as 
representations in working memory. In addition, there are amodal partitions of working 
memory. One amodal partition is a control store that contains information about task goals 
and procedural steps. Another amodal partition is a general working memory that contains 
miscellaneous information that arises during the execution of a task.

As shown in Figure 17.2, EPIC has several perceptual processors. The time parameters 
associated the processing of the perceptual processors may be (a) standard, which come 
from surveys of the psychological literature and are felt to be relatively fi xed across tasks, 
or (b) typical, which may vary from task to task.

There is a visual processor, which takes in stimuli from the visual scene and produces 
outputs in visual working memory. The visual processor has separate processors for the 
fovea, parafovea, and periphery. Each of these areas will produce different information 
from the same scene. For instance, the periphery may detect the sudden appearance of 
objects in the environment, the parafovea may detect the area occupied by a blob of text 
on a screen, and the fovea may detect the actual characters of the text. Each of these areas 
may have different time parameters on their processes. Event detection takes about 50 ms 
(periphery), while shape detection occurs about 100 ms later (parafovea), and pattern 
recognition about 250 ms later (fovea).

The auditory processor takes in sound stimuli and produces representations in auditory 
working memory. Again, different kinds of information-processing will take different 
amounts of time to output. The time to process a tone onset is about 50 ms, and a fully 
discriminated frequency appears about 250 ms later. After these outputs reach auditory 
working memory, they decay after about 4 s.

There are motor processors controlling the hands, eyes, and vocal tract (Figure 17.2). 
These can operate simultaneously. The cognitive processor sends commands to a motor 
processor by specifying the type and parameters of the movement to perform. The motor 
processor then translates these into a simulated movement. Movements are specifi ed in 
terms of features. The time to execute a movement depends on movement features and 
the mechanical properties of the movements (e.g., the trajectory of movement of the 
hands).

The motor processors work in two phases: preparation and execution. In the preparation 
phase, a command is received from the cognitive processor and recoded into a set of 
movement features. For instance, to specify the tap of a fi nger on a key may require fi ve 
features: the tap style, hand, fi nger, direction of movement, and extent of movement. The 
generation of each feature takes 50 ms, but features may be reused from previous move-
ments, or generated in advance. For instance, tapping two different keys will share some 
features and allow the re-use of features. Tapping the same key twice will re-use all the 
features. If a movement can be anticipated, then the features can be prepared in advance. 
The execution phase has a delay of 50 ms to initiate the movement specifi ed in the prepa-
ration phase. The physical movement depends on mechanical properties. For instance, the 
tap motion of a fi nger on the keyboard depends on a version of Fitts’ law. The manual 
processor is capable of different movement styles such as punching keys, tapping, two-
fi ngered patterns, pointing with a mouse, or pointing with a joystick. The occulomotor 
system has both voluntary motions (saccades) and involuntary (refl exive) motions. The 
vocal processor is capable of simple fi xed utterances.

c17.indd   451c17.indd   451 9/15/2006   6:21:54 PM9/15/2006   6:21:54 PM



452 HANDBOOK OF APPLIED COGNITION

E1

ACT

The ACT family of production system theories has the longest history of production 
system cognitive architectures. The seminal version of the ACT theory was presented in 
Anderson (1976), and it has undergone several major revisions since then (Anderson 1983, 
1990, 1993; Anderson & Lebiere 1998; Anderson et al. 2004). Until recently, it has been 
primarily a theory of higher cognition and learning, without the kind of emphasis on 
perceptual-motor processing found in EPIC (Kieras & Meyer 1997) or the Model Human 
Processor (Card et al. 1983). The success of ACT as a cognitive theory has been histori-
cally in the study of memory (Anderson & Pirolli 1984; Anderson & Milson 1989), lan-
guage (Anderson 1976) problem-solving (Anderson 1993) and categorization (Anderson 
1991). As a learning theory, ACT has been successful (Anderson 1993) in modeling the 
acquisition of complex cognitive skills for tasks such as computer programming, geome-
try, and algebra, and in understanding transfer of learning across tasks (Singley & 
Anderson 1989). ACT has been strongly tested by application in the development of 
computer tutors (Anderson et al. 1990).

ACT-R, like previous versions of the ACT theory, contains assumptions about (1) 
knowledge representation, (2) knowledge deployment (performance), and (3) knowledge 
acquisition (learning). The current publicly released version of the architecture is ACT-R 
5.0, which is illustrated in Figure 17.3. The architecture is arranged as a set of modules, 
each devoted to processing a particular kind of information, which are integrated and 
coordinated through a centralized production system module. Each module is assumed to 

External World

Intentional
Module

Declarative
Memory Module

Goal
Buffer

Retrieval
Buffer

Visual
Buffer

Manual
Buffer

Visual
Module

Manual
Module

Matching

Selection

Execution

Productions

Figure 17.3 The ACT-R 5.0 architecture
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deposit information into buffers associated with the module, and the central production 
system can only respond to the contents of the buffers, not the internal workings of the 
modules. This is consistent, for instance, with the observation that people do not have 
awareness of all of the retinal information in the visual fi eld. The ACT-R 5.0 theory makes 
no claim about the complete set of modules that may eventually be identifi ed. Each 
module, including the production module, has been hypothesized to occur in particular 
brain locations:

• Visual module (occipital cortex, and others) and visual buffers (parietal cortex) are 
based on EPIC’s modules and keeps track of objects and locations in the visual fi eld.

• Manual module (motor cortex; cerebellum) and manual buffer (motor cortex) are based 
on EPIC’s modules and is associated with control of the hands.

• Declarative module (temporal lobe; hippocampus) and retrieval buffer (ventrolateral 
prefrontal cortex) are associated with the retrieval and awareness of information from 
long-term declarative memory.

• Goal buffer (dorsolateral prefrontal cortex) keeps track of the goals and internal state 
of the system in problem-solving.

• Production system (basal ganglia) is associated with matching the contents of module 
buffers and coordinating their activity. The production includes components for pattern 
matching (striatum), confl ict resolution (pallidum), and execution (thalamus). A produc-
tion rule can be thought of as a formal specifi cation of the fl ow of information from 
buffered information in the cortex to the basal ganglia and back again.

Historically, ACT-R provided limited, ad hoc modeling of perceptual-motor behavior. 
The production, declarative, and goal modules in ACT-R 5.0 are vestigial remnants of 
those earlier versions of ACT-R, and still remain the core of the current architecture. The 
declarative memory module and production system module store and retrieve information 
that corresponds to declarative knowledge and procedural knowledge (Ryle 1949). Declar-
ative knowledge is the kind of knowledge that a person can attend to, refl ect upon, and 
usually articulate in some way (e.g., by declaring it verbally or by gesture). Declarative 
knowledge includes the kinds of factual knowledge that users’ can verbalize, like “The 
‘open’ item on the ‘fi le’ menu will open a fi le.” Procedural knowledge is the know-how 
we display in our behavior, without conscious awareness. For instance, knowledge of how 
to ride a bike and how to point a mouse to a menu item are examples of procedural 
knowledge. Procedural knowledge specifi es how declarative knowledge is transformed 
into active behavior. Declarative knowledge in ACT-R is represented formally in terms of 
chunks (Miller 1956; Simon 1974). Whereas the information in the declarative memory 
module corresponds to personal episodic and semantic knowledge that promotes long-term 
coherence in behavior, the goal module stores and retrieves information that represents 
the internal intention and problem-solving state of the system and provides local coherence 
to behavior.

Chunks are retrieved from long-term declarative memory by an activation process. 
Activation may be interpreted metaphorically as a kind of mental energy that drives cogni-
tive processing. Activation spreads from the current focus of attention, including goals, 
through associations among chunks in declarative memory. These associations are built 
up from experience, and they refl ect how ideas co-occur in cognitive processing. Gener-
ally, activation-based theories of memory predict that more activated knowledge structures 
will receive more favorable processing. The spread of activation from one cognitive 
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structure to another is determined by weighting values on the associations among chunks. 
These weights determine the rate of activation fl ow among chunks.

While sharing many commonalities with the EPIC perceptual-motor modules, ACT-R 
5.0 does differ in several respects. The visual system in ACT-R 5.0 is separated into two 
components: (1) a where system that processes locations in the visual fi eld, and a (2) what 
system that processes objects. Productions may request information from the “where” 
system by specifying a set of constraints based on visual properties (e.g., “an object that 
is colored red”) or spatial location (e.g., “an object at the top of the screen”) and the 
“where” system will return a chunk that matches those constraints. This supports the 
modeling of pre-attentive pop-out effects (Treisman & Gelade 1980) that occur, for 
example, when a display includes one red object amongst a set of green objects. In such 
a case, a production rule that requests “objects that are colored red” will cause the “where” 
system to return a chunk specifying the single red object displayed, and visual search time 
will be constant regardless of the number of green objects on the display. On the other 
hand, a production rule request for “an object that is colored green” will cause the “where” 
system to return a chunk that represents any one of the green objects, and the time to 
search for a particular green object will require repeated calls to the “where” system 
(a serial self-terminating search) that will exhibit time costs that depend on the number 
of other green objects in the display.

The “what” system of the visual module keeps track of visual objects. Production rules 
may request the “what” system to identify objects at a location, which causes the “what” 
system to shift visual attention to that location and return a declarative chunk that repre-
sent the object. ACT-R 5.0 supports a coarse model of visual attention in which visual 
search occurs at a rate of 185 ms per visual item, and a fi ne-grained model called EMMA 
(Salvucci 2001) in which the time for eye movements have time costs related to the eccen-
tricity between the current focus of attention and the target location requested by a 
production.

Production rules are used to represent procedural knowledge in ACT-R. That is, they 
specify how to apply cognitive skill (know-how) in the current context, and how to retrieve 
and modify information in the buffers to other modules. Like EPIC, production rules in 
ACT-R have the basic IF<condition> THEN <actions> format. In ACT-R, each production 
rule has conditions that specify structures that are matched in buffers cor responding to 
information from the external world or other internal modules. Each production rule has 
actions that specify changes to be made to the buffers. As in EPIC, it is assumed that the 
cycle of production matching and execution takes about 50 ms to complete.

ACT-R 5.0 is a mix of parallel and serial processing. Modules may process information 
in parallel with one another. So, for instance, the visual modules and the motor modules 
may both operate at the same time. However, there are two serial bottlenecks in process. 
First, only one production may execute during a cycle (which is different than EPIC). 
Second, each module is limited to placing a single chunk in a buffer.

ACT-Scent

Seeking and gathering information for some purpose typically requires that users perform 
some mix of navigation through on-line information structures and the use of search 
engines. To model these activities requires a theory of how people perceive those informa-
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tion structures and then decide on the best course of action to take. An elaboration of the 
ACT-R architecture has been developed to model such activities. This architecture, called 
ACT-Scent5 (Pirolli in press), was developed within a more general theoretical framework 
called Information Foraging Theory. This theory was developed to understand and predict 
information seeking and gathering behavior with complex technologies. Among other 
applications, Information Foraging Theory (Pirolli & Card 1999) has been used to develop 
cognitive models of Web navigation (SNIF-ACT 1.0 and 2.0 described below) that 
form the basis for a system that predicts Web usability. The theory is concerned with 
human behavior and technology involved in gathering information for some purpose, 
such as making a medical decision, fi nding a restaurant, or solving a programming 
problem.

Information Foraging Theory

Information Foraging Theory has adopted the rational analysis program initiated by 
Anderson (1989, 1990, 1991). The rational analysis approach involves a kind of reverse 
engineering in which the theorist asks (a) what environmental problem is solved, (b) why 
is a given behavioral strategy a good solution to the problem, and (c) how is that solution 
realized by cognitive mechanism. The products of this approach include (a) characteriza-
tions of the relevant goals and environment, (b) mathematical rational choice models (e.
g., optimization models) of idealized behavioral strategies for achieving those goals in 
that environment, and (c) computational cognitive models. This methodology is founded 
on the heuristic assumption that evolving, behaving systems are well-designed (rational) 
for fulfi lling certain functions in certain environments. Rational analysis is a variant form 
of an approach called methodological adaptationism that has also shaped research pro-
grams in behavioral ecology (e.g., Tinbergen 1963; Mayr 1983; Stephens & Krebs 1986), 
anthropology (e.g., Winterhalder & Smith 1992), and neuroscience (e.g., Glimcher 
2003).

Rational Analysis

Anderson has used rational analysis to study the human cognitive architecture by assum-
ing that natural information-processing mechanisms involved in such functions as memory 
(Anderson & Milson 1989; Anderson & Schooler 1991) and categorization (Anderson 
1991) were well-designed by evolutionary forces to meet the problems posed by the envi-
ronment. The key assumption behind rational analysis could be stated as

Principle of rationality: The cognitive system optimizes the adaptation of the behavior 
of the organism.

As developed by Anderson (1990) rational analysis requires a focus on understanding the 
structure and dynamics of the environment. This understanding provides a rationale for 
the design of information-processing mechanisms. Anderson proposed the following 
recipe for rational analysis:

1. Precisely specify the goals of the agent.
2. Develop a formal model of he environment to which the agents is adapted.

88
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3. Make minimal assumptions about the computational costs.
4. Derive the optimal behavior of the agent considering (1)–(3).
5. Test the optimality predictions against data.
6. Iterate.

Note, generally, the emphasized focus on optimal behavior under given goals and envi-
ronmental constraints and the minimal assumptions about the computational structure 
that might produce such behavior.

Interaction with the information environment differs in a fundamental way from well-
defi ned task environments that have been the dominant paradigms in HCI, such as expert 
text editing (Card et al. 1983) or telephone assistance (Gray et al. 1993). In contrast to 
such tasks in all but the most trivial cases, the information forager must deal with a 
probabilistically textured information environment (Brunswik 1952). In contrast to appli-
cation programs such as text editors and spreadsheets, in which actions have fairly deter-
minate outcomes,6 foraging through a large volume of information involves uncertainties, 
for a variety of reasons, about the location, quality, relevance, veracity, and so on, of the 
information sought and the effects of foraging actions. The ecological rationality of infor-
mation foraging behavior must be analyzed through the theoretical lens and tools appro-
priate to decision making under uncertainty. The determinate formalisms and determinate 
cognitive mechanisms that are characteristic of the HCI paradigm are inadequate for the 
job of theorizing about information foraging in probabilistically textured environments. 
Models developed in Information Foraging Theory draw upon probabilistic models, and 
especially Bayesian approaches, and they bear similarity to economic models of decision-
making (rational choice) under uncertainty and engineering models.

ACT-Scent Architecture

Figure 17.4 presents the basic ACT-Scent architecture used in information foraging models 
(Pirolli 1997, 2005; Pirolli & Card 1999). It couples a simpler version of the ACT-R 
architecture to a module that computes information scent. Below, this chapter will present 
specifi c models of Web foraging (SNIF-ACT 1.0 and SNIF-ACT 2.0) developed within 
this architecture. The architecture includes a declarative memory containing chunks, a 
procedural memory containing production rules, and a goal memory containing the hier-
archy of intentions driving behavior. The information scent module is a new addition to 
ACT that is used to compute the utility of actions based on an analysis of the relationship 
of content cues from the user interface to the user’s goals.

A Spreading Activation Model of Information Scent

Information foraging behavior will often depend on assessments of the utility and costs 
of pursuing information items. In browsing for information on the Web, people must base 
navigation decisions on assessments of information scent cues associated with links from 
one Webpage to another. These information scent cues are the small snippets of text and 
graphics that are associated with Web links. Those cues are intended to represent tersely 
the content that will be encountered by choosing a particular link on one page and 
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navigating to the linked page. When browsing the Web by following links, users must use 
these cues presented proximally on the web-pages they are currently viewing in order to 
make navigation decisions. The measure of information scent provides a means to predict 
how users will evaluate different links on a web-page, and as a consequence, the likeli-
hood that a particular link will be followed.

The rational analysis of the use of information scent assumes that the goal of the infor-
mation forager is to use proximal external information scent cues (e.g., a web-link) to 
predict the utility of distal sources of content (i.e., the web-page associated with a web-
link), and to choose to navigate the links having the maximum expected utility. Pirolli 
(2005) decomposed this problem into three parts: (1) a Bayesian analysis of the expected 
relevance of a distal source of content conditional on the available information scent cues; 
(2) a mapping of this Bayesian model of information scent onto a mathematical formula-
tion of spreading activation; and (3) a model of rational choice that uses spreading activa-
tion (Anderson & Pirolli 1984) to evaluate the utility of alternative choices of web-links. 
This rational analysis yielded a spreading activation theory of utility and choice.

The spreading activation theory of information scent assumes that the user’s cognitive 
system represents information scent cues and information goals in cognitive structures 
called chunks. Figure 17.5 presents a schematic example of the information scent assess-
ment subtask facing a Web user. Figure 17.5 assumes that a user has the goal of fi nding 
information about “medical treatments for cancer,” and encounters a web-link labeled 
with the text that includes “cell,” “patient,” “dose,” and “beam.” The user’s cognitive task 
is to predict the likelihood that a distal source of content contains desired information 
based on the proximal information scent cues available in the Web link labels. Each node 
in Figure 17.5 represents a cognitive chunk. Chunks representing information scent cues 
are presented on the right side of Figure 17.5, chunks representing the user’s information 
need are presented on the left side. Also represented by lines in Figure 17.5 are associa-
tions among the chunks. The associations among chunks come from past experience. The 
strength of associations refl ects the degree to which proximal information scent cues 
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Figure 17.4 The ACT-Scent cognitive architecture
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predict the occurrence of unobserved features. The strength of association between a 
chunk i and chunk j is computed as,

 
S

i j

iji =
( )
( )( )log

Pr

Pr  
(17.1)

Where Pr(i|j) is the probability (based on past experience) that chunk i has occurred 
when chunk j has occurred in the environment, and Pr(i) is the base rate probability of 
chunk i occurring in the environment. Equation 17.1 is also known as Pointwise Mutual 
Information (Manning & Schuetze 1999) or PMI.

It is assumed that when a user focuses attention on a web-link their attention to infor-
mation scent cues activates corresponding cognitive chunks. Activation spreads from those 
attended chunks along associations to related chunks. For instance, activation would fl ow 
from the chunks on the right of Figure 17.5 through associations to chunks on the left of 
Figure 17.5. The amount of activation accumulating on the representation of a user’s 
information goal provides an indicator of the likelihood that a distal source of information 
has desirable features based on the information scent cues immediately available to the 
user. For each chunk i involved in the user’s goal, the accumulated activation received 
from all associated information scents chunks j is,
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where Wj represents the amount of attention devoted to chunk j. The total amount of acti-
vation received by all goal chunks i is just,
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(17.3)

The theory assumes that the utility of choosing a particular link is just the sum of acti-
vation it receives (Eqn 17.3) plus some random noise. From this assumption (see, Pirolli 
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Figure 17.5 A cognitive structure in which cognitive chunks representing an information goal 
are associated with chunks representing information scent cues from a web-link
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2005) one can derive that the probability that a user will choose link L, having a summed 
activation VL, from a set of links C on a Webpage, given an information goal, G, is
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(17.4)

The information scent mechanisms are integral to modeling user judgments of which 
navigation action to take, including when to give up.

APPLICATIONS

This section illustrates the application of computational cognitive models to HII. This set 
of examples was selected to illustrate each of the three theories discussed above in three 
HII application domains. The examples include an EPIC model of visual search over 
information displays, ACT-R models of hand-held devices, and ACT-Scent models of 
seeking information on the Web.

EPIC Application: Visual Search of Hierarchical Information Displays

Many tasks involving interaction with information require visual navigation through dis-
plays of data that are hierarchically organized. Simple examples of such displays include 
menus (Hornof & Kieras 1997; Byrne et al. 1999) and web-pages. For instance, web-pages 
often arrange sets of links into groups (i.e., links within a group are proximal to one 
another and groups are spaced apart from one another), and provide distinctive labels for 
the visual groups. For instance, the home page for an on-line newspaper may contain visu-
ally grouped links labeled “Headlines,” “Local,” “Business,” “Sports,” “Entertainment,” 
and so on. The benefi ts of such hierarchical arrangements are common wisdom in the 
design world (Spool et al. 1999).

Hornof and Halverson (2003) developed an EPIC model to make quantitative predic-
tions regarding visual navigation of such hierarchically arranged information displays and 
to make predictions about the visual scan paths of users. Hornof and Halverson presented 
labeled and unlabeled layouts of one, two, four, or six groups of fi ve text labels (pseudo-
words). Figure 17.6 shows examples of a six-group labeled layout used in the experiment. 
Participants were visually presented a pseudo-word that would be their target for visual 
search, then they were presented with a display to search. In conditions in which labeled 
groups were presented, the users were presented with the group label from the group in 
which the target would be found, as well as the pseudo-word to fi nd within the group. The 
location of the target in the display was random across trials.

Hornof and Halverson (2003) encoded a representation of the task and display into 
EPIC, along with the visual-perceptual features of the screen objects. Production rules 
were written to represent the cognitive strategies of study participants. Two strategies were 
found to fi t the data:

• Noisy-systematic search strategy was used to predict data for the unlabeled layouts. 
This strategy assumes that people make a maximally effi cient foveal sweep of the 
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display in which minimizes the number of fi xations required to fi xate the contents of 
the display in the high-resolution fovea (Hornof & Kieras 1997). The strategy is noisy 
because it sometimes overestimates how far to move the eyes.

• Mostly systematic two-tiered search strategy was used to predict eye movements on 
displays containing labeled groups. This strategy assumes that people fi rst search labels 
until a target group is found, then search within that group. It is mostly systematic 
because it searches in an ordered fashion 75 per cent of the time, and random order 25 
per cent of the time.

Figure 17.6 shows observed eye fi xations patterns above eye movement patterns pre-
dicted by EPIC. One can observe good qualitative match of the model’s search strategy 
to those of a participant. Figure 17.7 shows the fi t of the model’s prediction to observed 
visual search times. The model predicts the unlabeled visual search with an average 
absolute error of 8 per cent and the labeled visual search with an average absolute error 
of 6 per cent.

ACT-R Application: Information Seeking on a PDA

A cognitive engineering tool called CogTool (John et al. 2004; Luo & John 2005) has 
been developed to support the rapid development of a class of simple ACT-R models, 
called ACT-Simple, that correspond to the KLM (keystroke-level model) of Card et al. 
(Card et al. 1983). The scope of KLMs is limited to capturing the error-free performance 
of highly skilled users executing a single specifi c method on a given interface. Task execu-
tion is modeled in terms of time parameters associated with (a) the physical operators for 
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keystrokes, homing (moving the hands to a home location), drawing, (b) a generic mental 
operation (to capture time needed to think), and (c) system response time.

The development of CogTools has been guided by a set of principles aimed at accelerat-
ing the spread of cognitive engineering among user interface designers (John et al. 2004): 
(1) exploit tools already in widespread use among the design and cognitive modeling 
communities; (2) tightly couple design mockup tools to cognitive modeling tools so that 
changes to an user interface design are immediately refl ected in changes to predictions of 
the cognitive model; and (3) avoid the need for programming by using such techniques 
as programming by demonstration.

CogTool allows a user interface designer to model an existing UI mocked up as existing 
web-pages. Alternatively, the designer may mock up a UI as web-pages using a web design 
application plus a palette of standard interface widgets such as buttons, check-boxes, text 
fi elds, pull-down menus, cascading menus, roll-over images, simulated speech-I/O, links, 
etc. The user interface mock-up defi nes the UI layout, as well as the effects of user actions 
(such as clicking on a button). The designer then may demonstrate a method of using the 
UI while recording the interaction with a tool called the Behavior Recorder. If there are 
alternative methods for performing some goal with the UI, then each method must be 
demonstrated. The resulting trace of behavior is assumed to represent an expert error-free 
execution of a given method for achieving some goal with the UI.

Each demonstration of a method with the UI is sent to a compiler that maps the behavior 
into a set of production rules that would generate the same behavior. These production 
rules implement a press-key ACT-Simple command that takes ∼200–350 ms, a move-
mouse ACT-Simple command that takes ∼650–750 ms to move 500 pixels, a move-hand 
command that takes ∼650–800 ms to execute, a look-at command that takes 150 ms, and 
a think command that takes 1200 ms. Most ACT-Simple commands compile to one pro-
duction, and the look-at command compiles to two productions (one for shifting visual 
attention and one for ensuring encoding of a visual object).

Luo and John (2005) used CogTool to make predictions about use of the Palm Vx 
handheld PDA with an application that provides a city guide for New York City. The goal 
was to model performance times for alternative methods for using the city guide to fi nd 
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the open hours for the Metropolitan Museum of Art (MET). A Web-based storyboard 
mockup of the interface states and transitions that would result from a user performing 
these methods was created. An analyst demonstrated each method on the mockup using 
the Behavior Recorder. The demonstrated behavior trace was automatically compiled into 
ACT-Simple commands, which in turn were compiled into ACT-R production rules. The 
resulting ACT-R models were then run to provide the equivalent of a KLM performance 
prediction.

The methods analyzed were chosen to cover a range of interaction techniques possible 
with the Palm PDA. Four methods were studied: (1) map navigation, which involved click-
ing on increasingly more detailed maps to zoom in on the location of the MET; (2) soft 
keyboard, which involved tapping on a layout of alphanumeric characters to type in 
queries; (3) graffi ti, which involved using a stylus to enter characters using the graffi ti 
shorthand technique; and (4) scroll bar, which involved scrolling through a list of museums 
until the MET appeared. Users (N = 10) were asked to perform each of he methods ten 
times on Palm PDAs, following a practice phase. The average task times for the methods 
ranged from 9.00 s to 13.60 s, with map navigation being the fastest method and Graffi ti 
being the slowest. The average CogTool prediction error for the four methods was 3.7 per 
cent (ranging from 1.38 to 7.43 per cent).

ACT-Scent Application: Seeking Information on the Web

The rational analysis of information scent presented above can be used to develop models 
of how users choose links on the Web. A similar rational analysis developed in Pirolli 
(2005) can be used to predict when users will leave a website. SNIF-ACT is a computation 
model developed in the ACT-Scent architecture based on these rational analyses. 
This section presents an overview of the SNIF-ACT model (Pirolli & Fu 2003; Pirolli 
2005), as well as an automated Web usability system called Bloodhound (Chi et al. 
2003) that was inspired by SNIF-ACT. For comparison, this chapter discusses a very 
similar Web usability analysis method called Cognitive Walkthrough for the Web 
(Blackmon et al. 2005; Kitajima et al. 2005) that is also based on the concept of informa-
tion scent.

SNIF-ACT

SNIF-ACT assumes that users have the procedural knowledge necessary to use the 
browser, such as clicking on a link, or clicking on the “back” button to go back to the 
previous web-page. This procedural knowledge is represented as a set of production rules. 
SNIF-ACT also assumes that users have knowledge of the addresses of most popular Web 
search engines. This knowledge is represented as chunks in declarative memory.

In a SNIF-ACT simulation, information scent cues on a computer display activate 
chunks and activation spreads through the declarative network of chunks. The amount of 
activation accumulating on the chunks matched by a production is used to compute a 
utility score, which is used to evaluate and select productions. For instance, the utility of 
productions implementing the selection and clicking of links is based on the activation 
that spreads from the link that the productions match against.
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SNIF-ACT 1.0 (Pirolli & Fu 2003) was used to simulate four users working on two 
tasks each. Users were free to navigate anywhere on the Web to accomplish these tasks 
(for details, see Card et al. 2001). SNIF-ACT 2.0 (Pirolli 2005) was matched to data from 
244 users. Users could work on eight tasks on two websites. Users were constrained to 
never leave the given website when performing their given task. Monte Carlo simulations 
with the model were used to generate data for the 16 tasks. For each task, the number of 
times SNIF-ACT was run was equivalent to the number of users observed on the task. 
Each point in Figure 17.8 plots data for a single link on a website, and each data point 
represents the number of users who selected that link, and the number of times SNIF-ACT 
selected the same link. Figure 17.8 shows that SNIF-ACT 2.0 provides good match to the 
data.

SNIF-ACT is a computational model derived from the rational analyses of Web naviga-
tion. The major assumption of the model is that Web navigations can be characterized by 
mechanisms that maximize expected information gain. Expected information gain is 
estimated by a spreading activation mechanism that calculates the relatedness of informa-
tion goal and link text. The good fi ts to human data provide strong support for the use of 
information scent to characterize information-seeking decisions on the Web.

Bloodhound

The Bloodhound service (Chi et al. 2003) employs a Web user fl ow model to predict 
website usage patterns and identify Website navigation problems. The service employs a 
variation on a graph fl ow algorithm which abstracts away from the details of the SNIF-
ACT model. This assumes that users come to a website with some information goal and 
forage for information by choosing links based on proximal information scent cues.

Figure 17.9 presents an overview of the process used by the Bloodhound service. A 
person (the website analyst) interested in performing a usability analysis of a website must 
indicate the website to be analyzed, and provide a text description representing a task that 
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Figure 17.8 The scatter plots for the number of times links were selected by the model and 
by user at the Parcweb and Yahoo sites (eight tasks per site)

c17.indd   463c17.indd   463 9/15/2006   6:21:56 PM9/15/2006   6:21:56 PM



464 HANDBOOK OF APPLIED COGNITION

E1

users are expected to be performing at the site. Bloodhound then must trawl the website 
to develop a representation of the linkage topology (the page-to-page links) and download 
the web-pages (content). From these data, Bloodhound analyzes the web-pages to deter-
mine the proximal information scent cues associated with every link on every page. At 
this point Bloodhound essentially has a representation of every page-to-page link, and 
the proximal cues associated with that link. From this, Bloodhound develops a graph 
representation in which the nodes are the website pages, the vertices are the page-to-page 
links at the site, and weights on the vertices represent the probability of a user choosing 
a particular vertex given the user’s information goal and the proximal information scent 
cues associated with the link (e.g., Eqn 17.4). This graph is represented as a page-by-page 
matrix in which the rows represent individual unique pages at the site, the columns 
also represent website pages, and the matrix cells contain the navigation choice probabi-
lities that predict the probability that a user with the given information goal, at a given 
page, will choose to go to a linked page. Using matrix computations (similar to those 
used in modeling a Markov process), this matrix is used to simulate user fl ow at the 
website by assuming that the user starts at some given webpage and iteratively chooses 
to go to new pages based on the predicted navigation choice probabilities. The user 
fl ow simulation yields predictions concerning the pattern of visits to web-pages, and the 
proportion of users that will arrive at target web-pages contain the information relevant 
to their tasks.

The Bloodhound service is provided over the Web. An input screen is provided to 
website analysts that allows them to enter specifi cations of user tasks, the website URL, 
and the target pages that contain the information relevant to those tasks. An analysis is 

Web Site  

Extract

Content

Extract

Content

Extract

Linkage
topology

Extract

Linkage
topology

User information
goal

Calculate page-to-page
probability of navigation choice

graph based on information scent

Simulate user flow

Predict usage pattern and
identify navigation problems

Usability
report

Figure 17.9 The conceptual fl ow chart for the processing done by the Bloodhound Web 
usability service
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then performed by Bloodhound and a report is then automatically generated that indicates 
such things as the predicted number of users who will be able to fi nd target information 
relevant to the specifi ed task, and intermediate navigation pages that are predicted to be 
highly visited that may be a cause of bottlenecks.

Chi et al. (2003) performed an evaluation of the capability of Bloodhound to predict 
actual user navigation patterns. Users were solicited to perform Web tasks at home, offi ce, 
or place of their choosing and their performance was logged using a remote usability 
testing system. Four different types of website were studied with eight tasks of varying 
diffi culty for each site. The comparison of interest was the match between observed and 
predicted usage patterns for each task and website. For each task + website, the observed 
data were the distribution of the frequency of page visits over every webpage. For instance, 
for a particular task + website, the home page might be visited 75 times, another page 25 
times, and so on. The comparison was the distribution of page visits for that task and 
website as predicted by Bloodhound. Of the 4 × 8 = 32 combinations of websites and 
tasks, there were strong correlations (Pearson r > 0.8) of observed and predicted visitation 
frequencies for twelve cases, moderate correlations (0.5 ≤ r ≤ 0.8) for 17 cases, and weak 
correlations (r < 0.5) for three cases. Given that this was the fi rst evaluation of Bloodhound 
the results seemed like a validation of the promise of the approach.

Cognitive Walkthrough for the Web

Cognitive Walkthrough for the Web (CWW) is a semi-automated method for fi nding and 
repairing Web usability problems that is similar in many ways to Bloodhound. CWW 
derives from a cognitive model called CoLiDes (Comprehension-based Linked model of 
Deliberate Search; Kitajima et al. 2000). Although CoLiDes differs in detail from SNIF-
ACT, it shares the basic assumptions that the Web user has an information goal and 
information scent drives information-seeking behavior. CoLiDes uses a technique called 
Latent Semantic Analysis (LSA) to compute information scent. LSA (Landauer & Dumais 
1997) assumes that the meaning of a word is associated with the meanings of all contexts 
that it has occurred in, while simultaneously the meaning of a message is associated with 
all the words it contains. In practice, the meaning of words is computed from a corpus of 
documents assumed to represent the linguistic environment of some population (e.g., 
college students). A word-by-document matrix, in which cell entries indicate the occur-
rence of some particular word in a particular document in the corpus is then extracted 
(typically, the log frequency of a word in a document), and submitted to a singular value 
decomposition (SVD) that is similar to factor analysis. This procedure computes a set of 
dimensions (substantially less than the number of documents) that may be interpreted to 
represent latent semantic factors. Each word can then be represented by its position in a 
space defi ned by these semantic factors. That is, each word will be represented as a vector 
of scores that indicate a position on each latent semantic factor. The psychological similar-
ity of two words is just a distance measure between them in the semantic space defi ned 
by these latent factors. Dumais (2003) provides a survey of LSA applications in psychol-
ogy and other fi elds. Turney (2001) has shown that PMI and LSA give very similar results 
on synonym tests. CoLiDes assumes that users’ goals are represented as a collection of 
words, and links and web-page headings are represented by the text from the web-page, 
plus elaborations that consist of words that have high similarity to that text.
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CWW identifi es four kinds of problems, proposes repairs to those problems, and pre-
dicts the severity of those problems before and after repairs. The procedure (Blackmon 
et al. 2005) consists of:

1. Selecting a semantic space (generated from an appropriate document corpus) to repre-
sent a given user group.

2. Constructing a representative set of user goals for the website.
3. Simulate how users will parse a web-page into regions and sub-regions.
4. Simulate the elaboration of link text and heading text.
5. Apply LSA to obtain similarity scores from goals to Web headings and links. Mark 

the correct heading and link that should be chosen for each given goal.
6. Apply a set of problem identifi cation rules.
7. Apply suggested repairs.
8. Apply problem severity formulae to predict severity for repaired and unrepaired 

problems.

The problem identifi cation rules identify:

• Weak link scent, in which no correct links have strong similarity scores with the goal.
• Unfamiliar links or headings, which are indicated by LSA measures from the repre-

sentative semantic space.
• Competing headings, which occur when a heading or associated sub-region on the web-

page shows high similarity to the user’s goal, but does not contain a correct link.
• Competing links in which there are links, other than the correct ones, that have high 

similarity to the user’s goal.

Repairs to these problems typically involve substituting words to reduce the problem 
(e.g., by substituting words with high similarity to the goal in correct links with weak 
scent). Problem severity is predicted by a regression formula fi t to data from a wide variety 
of tasks. The problem severity formula predicts the number of clicks required to get to a 
desired page on the analyzed web-page based on the familiarity of the correct link, the 
strength of scent of the correct link, and the number of competing links under competing 
headings.

GENERAL DISCUSSION

Computational cognitive models have been applied to an ever-broadening range of 
problems in human–computer interaction (Pirolli 1999). Recent applications in human–
information interaction suggest that this record of success will continue. Cognitive architec-
tures, such as EPIC, ACT-R, and ACT-Scent provide an integrated approach to modeling 
perception, motor action, and higher-order cognition. Their utility has been demonstrated 
in generating cognitive engineering models for such applications as visual search, mobile 
computing, and Web use.

Although working with such cognitive models directly requires some amount of train-
ing, the CogTool project (John et al. 2004; Luo & John 2005) suggests that standard 
rapid-prototyping tools for user interface design can be enhanced with built-in cognitive 
engineering evaluations. Similarly, the Bloodhound system (Chi et al. 2003) was targeted 
for use by Web designers with no training in cognitive engineering. The concept of 

c17.indd   466c17.indd   466 9/15/2006   6:21:57 PM9/15/2006   6:21:57 PM



MODELS OF HUMAN–INFORMATION INTERACTION 467

E1

information scent has been used to develop Web usability guidelines (Spool et al. 2004) 
and evaluation methods (Blackmon et al. 2002, 2005) for use by practitioners.

One of the signifi cant challenges that lie ahead for cognitive models of HII is the 
problem of modeling the interpretation of content into actionable knowledge. For text, this 
involves using statistical language techniques such as PMI or LSA to build associative 
networks that support the mapping of external text onto user goals and procedural knowl-
edge (e.g., the selection of production rules). For multimedia, this is much more diffi cult. 
Can we model how people make sense of the multimedia content with which they interact? 
This requires the integration of additional components for robust language comprehension, 
graphics understanding, rich knowledge representation, reasoning, knowledge acquisition, 
and meta-cognition, among other things. Many of these components have a long history 
of research in artifi cial intelligence and computational linguistics, but have yet to be 
incorporated into an integrated cognitive architecture such as the ones described in this 
chapter.
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NOTES

1 The term “human–information interaction” fi rst appeared in the public literature in a birds-of-
a-feather meeting title in 1995: Gershon, N. (1995, December). Human Information Interaction. 
In the Proceedings of the Fourth International World Wide Web Conference (http://www.w3.
org/Conferences/WWW4/bofs/hii-bof.html).

2 The ACM is the Association for Computing Machinery, which is the main computer science 
organization, and CHI is the conference for the Computer Human Interaction special interest 
group of the ACM.

3 CERN is the European Organization for Nuclear Research, a multinational science community 
operating the world’s largest particle physics laboratory.

4 Many models in psychology have free parameters that are estimated from the data to which the 
model is fi t. A zero-parameter model is one in which no parameters need to be estimated from 
the data (all are set a priori).

5 Pronounced “accent.”
6 Barring bugs, of course.
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